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The theory of automatic detection at a seismic array by means of
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independent arrays of 6 elements each, assuming equal expected
signal-to-noise values, the two detectors are 5.4 and 4.3 dB
worse, respectively, than an F detector would be operating on
a beam of 0x22=132 channels with perfect signal correlation,
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ABSTRACT

The theory of automatic detection at a seismic
array by means of an F statistic is extended to a net-
work of such arrays. The arrays may have equal or
different expected signal-to-noise ratios., Two tech-
niques are discussed: (1) the composite F detector in
which a vote is taken among the arrays; (2) a multi-
array F detector in which the original data from the
independent arrays are combined to form one F statistic,
The detectors are found to be nearly equal in detection
capability, with the multi-array detector superior by
1-2 dB in the cases examined., For example, with 22
independent arrays of 6 elements each, assuming equal
expected signal-to-noise values, the two detectors are
5.4 and 4,3 dB worse, respectively, than an F detector
would be operating on a beam of 6x22=132 channels with
perfect signal correlation,
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INTRODUCTION

The performance of an F-detector on a 3l-element
TFO short-period array has been studied by Blandford
(1970). lle found that the detector operated in good
agreement with theory; therefore it seems reasonable to
study the expected performance of an F-detector operat-
ing on a network. This would be of application to at
least two distinct types of systems: (1) an array such
as NORSAR where signal correlation between subarravs
may be poor; in this case a detector might be operated
independently for each subarray, and the results
combined in some way; (2) a world-wide network of
completely independent arrays with different noise and
signal levels,

A simple F-detector is said to detect if F(NI,NZ,A)
> Fy» where F(Nl,NZ,A) is the computed test
statistic, assumed to belong to a population distributed
as a non-central F with Nl and N2 degrees of free-
dom and noncentrality parameter A, and Fo is the thres-
hold determired from the desired false alarm rate. Thus
the probability of detection by this detector is the
probability that F > Fo in the presence of a signal, In
order to make meaningful comparisons between different
systems, the false alarm rate should be held constant,
and this is done in all the measurements made in this
report, Blandford (1970) suggests that N1 = 2BT = 3 is
suitable, where integrated bandwidth = B = 0,5 Hz, and
the signal window = T = 3,0 seconds., Theory shows that
N2 = 2BT(N-1), where N is the number of elements in the



arvay, (Some notational confusion is possible with the
denominator of the expression for signal-te-noise ratio
(S/N); however, this is usually cicar from the context,)

A power detector may be defined as the ratio of
the beam power in a shert signal windcew to that in an
arbitrarily long noise window, If the noise is station-
ary this is equivalent, for small signals, to arn F
detector with N, arbitrarily large, approaching a xz
distribution, Given the hypothesis of stationary noise,
this wonld be superior in pure detection capability to
the Fedetector, where the noise statistics are accumue
lated only in the signal window, and where Nz is there-
fore limited, llowever, Blandford (1970) showed that the
I detector has features which make it more reliable in
practice, and in this paper we show that by use of long
time windows the quantitative difference can be made
negligible for all except the smallest arrays of 2-3
elements,

Signal-to-noisc values used throughout this report
arc calculated as the square root of power ratios,
Blandford showed that to convert these values to those
given by the ratio of pecak-to-peak signal divided by
peak-to-pecak noise in the previous 60 seconds, the
square root of the power ratio should be multiplied by
0,5, Signal-to-noisc values are defined at both the
instrument and beam level by the symbols (S/N)

(S/N8)
Nl/“

... and

seis

T respectively, The relation (_S/N)bcam =

(S/N) . .. is true sincec the noise is uncorrelated,
seis

by hypothesis for the F-detector.



In the following sections, we first discuss the
question of the optimum signal window length over which
to calculate the F statistic, Blandford used 3 seconds,
but this is shown not to be optimum for small arrays,

We then develop the theory for a 'composite F-
detector" in which a vote is taken among independently
detecting arrays in order to scttle on a final detec-
tion,

This is followed by a section in which the "multi-
array Fedetector" is developed. By this technique the
actual traces from cach independent array are combined
into a single statistic which for uncorrelated signals
is, in theory, superior to any other detector, includ-
ing the composite detector,

The two methods arc then extended to the case of
unequal cxpected signal-to-noisc ratios at the diff-
erent subarrays. This is, of course, particularly
applicable to a world-wide network of stations some of
which would be closcer to an cpicenter than others,
However, many workers have also shown that for small
seismic regions of the ecarth therc are significant
repeatable amplitude anomalies recorded across LASA,
so the two methods would also be suitable detectors
for such a case,



PLHIMUM STGNAL WINDOW FOR DETECTION

Llandford (1970) used a 3-sccond signal window in
his study of the automatic detector at TFO, This window
was snggested by the studies of carlier workers and hy>
intuition, which suggests that the window should be
oniy as lowg as the dominant portion of the signal, In
his Figure 8§, Blandford showed that for small arrays,

N < 7, there were severe departures from proportionality
to 31/2 for the signal=to-noise ratio which would be
detected 90 per cent of the time,

It scemed plausible that this departure occurred
becanse the noise estimate, calculated in the signal
window by averaging residual power over all N channels,
was not statistically reliable for small N, The sta-
bility wonld be increased by a louger time window, but
the signal-to=-noise ratio wonld decrease by (3/T)1/Z.
It turns out, as we shall see below, that the two
effects almost perfectly cancel for large arrays, and
that detection is substantially improved for small

arrays,

)
As T increases, ) = 2“T(5/“)ﬁc1m
since (S/N)° ~ /7, Ny and N, increase in proportion

remains constant,

to T/3. Calculation for successive values of T yields
the curves in Figure 1, In the nweighborhood of the
optimum window lcugth the threshold signal is insensi-
tive to the precise value of the window length, llowever,
for 3 elements there i1s almost 0,5 m improvement in

the regquired signal between the 3-second and 30-sccond
windows,

-



The optimum window length as a function of the
number of clements is shown in Figure 2, The actual
optimum length is presumably somewhat longer since in
reality the signal is not exactly zero outside of a
3-second window,

In Figure 3 the upper curve gives the clement
signal/noise valuc required for 90 per cent prob-
ability of detection at 0,1 false-alarm per day for a
3 second time window as a function of the number of
clements in the array, The lower curve gives the
signal/noisie value for the optimum window, The curves
are shifted up by a factor of /2 over those given by
Blandford (1970) due to an error in calculation in
that paper,

We note that both curves arc asymptotic to Nliz.
the theoretical performance curve for a power detector.
This can be simply explained by noting that the signal/
noise ratio required on the beam for a given probability
of detection decrecases as a function of N, but
approaches a limit for large N, for which further
increases of Nz have little cffect., Thus for large N,
the decrease of seismometer (S/N) required results
primarily from the n1/2 improvement of (S/N) on the
beam,



AT LEAST N SUBARRAY BETECTION

When the signal is not identical across a large
array, as may be the casce at NORSAR, the array can he
broken into a number of smaller subarrays and the F
dezector operated separately on cach subarray, If one
then asks for at least K subarrays to detect before one
declares a detection (K is a number yet to be specified)
then the detection capabilits is not much worse than
once would obtain in the ideal case of an identical
signal on the entire array acting as onec F detector,

It turus out that there is an optimum choice of K which
maximizes the signal detection probability with fixed
false-alarm rate. This value is usually slightly more
than half the number of subarrays, and it depends on
the numbers of degrees of freedom (i.e., on the time
and frequency windows and the number of elements per
subarray) and on the number of subarrays, also to a
slight extent on the chosen falsc-alarm rate (F thres-
hold) and signal level. The maximum is, however,
fairly broad and an error of 1 or 2 in the choice of

K would not seriously degrade the performance of a
large systen,

We assume in our analysis that the signals are
perfectly correlated across cach individual subarray
(and the noise perfectly uncorrelated). In addition,
we will begin by assuming the signals on different
subarravs to be of the same size (same signal/noise
ratio), although later we will consider the effects of
different size signals, Representing the probability of



a detection on any sudbarray by p (the same for all sub-
arrays), the probability of at least K detections out
of M is given by the summed binomial distribution

M :
Pen - L et a-p)

i=

M-i

This formula is uscd to evaluate cither the false-alarm
rate or the signal detection probability, and p is
accordingly computed from a central F or a non-central
'y, respectively. Subroutines to do these calculations
arc given in the Appendix. Another assumption we have
made in our calculations here is that the frequency
window is 1/2 hertz, so that Nl = T, i.c, the number of
degrees of frecedom of the numerator equals the time
window in seconds, an approximation to a system already
in opecration (Blandford, 1970), In any case, the non-
centrality pararecter is » = N Nl (S/N)z, where (S/N) is
the signal/noise ratio on each element and N is the
number of clements/subarray, In expressing our false-
alarm ratc in terms of falsec-alarms/day we have assumed
86400/T samples per day, although if an overlapping or
sliding window is used (the usual case), there will
presumably be an additional as-yet-undetermined factor,
In view of thec stcepness of the operating curves
obtained, this is probably not a crucial point,

We have cvaluated this detector for certain con-
figurations that might be used at NORSAR: 6 elements/
subarray (.\'l = 3 and Nz = 15) and 7, 13, and 22 subarrays.

o=

(1)



Figures 6 through 8 show the effect of choice of K on
signal detection vs false-alarm rate for a fixed signal
strength, Figures 9 through 11 are operating curves for
the optimum K detectors for the same configurations,
Table !l summarizes these results in terms of signal/
noise ratios on subarray beams for 90 per cent detec-
tion probability with one false-alarm/day and compares
them with the performance of a single subarray and with
the ideal performance of a single F detector operating
on the whole array ("total beam"), given in Table I.
Also included in Tables | and Il are similar data for
groups of l12-clement subarrays (Nl = 3 and Nz = 33).
Figures 4 and S give operating curves for single sub-
arrays. (Note that element signal/noise ratios are
derived from beam signal/noise ratios by dividing by
the square root of the number of clements in the sub-
array,) Table Il shows that the optimum K detector is
significantly superior to a single subarray, and in

the case where the total array is so large that sig-
nificant loss of signal coherence occurs, it may well
perform better than a single F detector operating on
the total beam,

In view of the result obtained above, that using
a time window somewhat longer than the three seconds
average signal length gave better results with a single
wetector, we tried using a longer time window on the
composite detector, The results, shown in Table III,
arc negative, even in the case of only three elements/
subarray, Apparently the composite detector is so much
more sensitive to signal/noise ratio than to degrees of



freedom that the improvement in noise estimate obtained
with a longer window is insufficient to offset the
degradation in cffective signal/noise ratio., We have
assumed a signal exactly three seconds long, so the
effective S/N ratio will be degraded by a factor /37T,
Of course in practice there will usually be some contri-
bution to the signal after three seconds, but it is
probably still true that the best time window for a
network of F detectors corresponds to the effective
signal duration, even though the best time window for
an individual F detector may be somewhat longer. Thus
in future systems there may have to be a compromise
between the role of a station as a station and its role
as part of a network, but the difference, in any case,
is not very great,

For network applications there is another consid-
eration that has a possible bearing on the choice of
time window and on the way decisions are reached, A
calculation based on (1) shows that for a 22-station
system, a network false-alarm rate of 1 per day
implies an average false-alarm rate of ~4600/day for
each individual station, Furthermore, decreasing the
network false-alarm rate to 10'6/day decreases the
station false-alarm rate only slightly, to ~1300/day,
due to the K'th power in (1). Thus the individual
station detections, by themselves, would be relatively
uscless for decision making, at the thresholds used
for network detection, Also, experimentally determining
the proper delays to correlate individual "detections"
would seem impractical because of the large number of



combinations, The best approach would seem to be a
fully automatic detector in which "all possible beams"
are scanned to cover a given area. In practice this
would merely involve scanning a table of delay times
and counting votes over sections of data corresponding
to the greatest and least delays for each station for
that region, It does not seem at all unlikely that a
region the size of Russia could be monitored in real
time with existing computers, With an efficient pro-
cedure much larger areas could probably be scanned. The
size of ecach beam and hence the number necessary to
cover a given area, would be influenced by the time
window used: a longer time window would reduce the
number required, Notice that automatic network detectors
necessarily give approximate locations simultaneously
with the detections, Most of these remarks also apply
to the multi-array F detector described below,

We should also point out that false-alarm rates
quoted in this report are per beam and must be multi-
plied by the number of beams to give the total network
false-alarm rate, For a system operating a thousand
beams, the rates quoted here are certainly too high,
False-alarm rates down to 10'2/day can be read directly
from the operating curvei, and linear extrapolation is
satisfactory, For a 22 station system, threshold mag-
nitude increases ~,6dB/decade decrease in false-alarm
rate., This represents another way in which time window
length can influence detection thresholds in real
systems,

A variation of the composite detector was also

-10-



investigated: on receipt of at least k1 subarray detec-
tions at threshold Fl, the threshold on the remaining

5 and a total of at least k
detections is then required in order to declare a

subarrays is lowered to F 5
detection by the system, Writing P(ﬁIp) to represent
the probability of exactly k events out of N when indi-
vidual events have probability p, a shorthand for the
binominal distribution, the probability of at least k2
subarrays detecting by this scheme is

2 .
PCzkp) = PGy Ipp) + L PGIPY) PG 0%y Ipgpy)

where P is the subarray detection probability at thres-
hold Fi1y P is the probability at threshold Y and
P,-P; is the fraction lying between F, and Fie (We use
the symbol " > " to mean "at least",) Note that

P(>k,) < P( g lpl)- This scheme was always worse than
the previous, and much simpler, detector. It gave com-
parable results only in the limits k1 > k2 and/or

F, > F,, which reduce to the previous case, (False-
alarm rate was always held constant; the ratio FZ/Fl
was specified and Fy determined by an inversion;) The
reason for the poorer performance is probably that the
effective number of subarrays is reduced by using a
lower K value and by exaggerating the weak subarrays:
the statistical "inertia" of the system is reduced by
the manipulations, Schcemes of this type appear to be
extremely unpromising and the idea has not been pursued
further, It might still be worthwhile to review

-11-
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non-detecting stations for arrival time information in
order to obtain a better least-squares location, although
it may very well be that using the arrival times on such
stations would not actually produce a better location,
This is particularly apt to be true for large K, where
one is practically guaranteed a good location for all
detections anyway.,

-12-



A MULTI-ARRAY F DETECTOR

There is another approach possible when signals are
not the same on all subarrays, which is a special case
of a technique of Shumway (1970). We consider the model
representing the output from the i'th sensor on the
j'th subarray as

yji(t) = ajsj(t) % nji(t)

where j =1, .o0y, M;j 1 =1, ,.., N;j and t = 0, 1, ..., L-1,
We assume the noise nji(*’ to be normal, stationary, and
uncorrclated between sensors, and the signals S. to be

the same on all sensors of a given subarray. We further
assume the S. all to have the same rms value over time

and explicitly allow for different size signals by
inclusion of the factors a., which we assume are known

a priori, Then, following Shumway (1970), the maximum-
likelihood estimate for the signal on the j'th subarray

is just
8. (t) = all 7. (&)
J J J*

where the dot signifies the subscript over which the
mean is taken.

In order to test the hypothesis that there is o

-13-



signal present on any subarray, i.e,., that all S.(t) = 0
we could transform to the frequency domain and form the
ratio of beam power to residual power as our test sta-
tistic, But if the data arc band-limited, to bandwidth

B, over whici the noise spectrum is constant, we can
instead usc an approximation to the F statistic given
by

N-DNE L FE )

[ . . = (3)
2BTM, 2BTM(N-1) ~
I I 1 vy - w700

where B is the filter biadwidth in hertz, T the time
window in seconds, M the number of subarrays, and N
the number of clements/subarray. In the presence of
signal, the non-centrality parameter is

M 5 5
2BTN _21 aj 15 (w,) |

Nuy) * £ A . (4)
.\'Z(wo)
where
_IBg B
- 2 ZJ’t dj bj (t)
S| =
BT Zj i



is the approximate mean signal power within the frequency
band, and Nz(wo) is the noise power, We include the fil-
ter center frequency “o in (4) in order to emphasize the
dependence on filter characteristics; in all of the work
in this report, we assume a filter similar to that used
at TFO, as described in Blandford (1970).

We can abbreviate (4) to
M .
2 gy B
A= NN, (] a. /M) (S/N)
1 j-l j

where Nl z 2BTM is the number of degrees of freedom of
the numerator and (S/N) is the normalized signal/noisec
ratio, defined, when a, = 1, as in Blandford (1970).
When all a. = 1, the expression for A has the same
form as previously, although the statistic is, in
gencral, different, When M = 1, the detector reduces

to the single-array F detector.

In order to evaluate the performance of this detec-
tor on an array such as NORSAR, wherc the signals are
generally of the same size on all subarrays, we set
all a, = 1, Table IV gives the results for some of the
same configurations for which the previous detector
was evaluated, The multi-array F detector does somewhat
better but is still worse than the ideal total array
beam, Figures 12 through 14 give operating curves for
this detector., Results obtained for a six-second time
window were worse, indicating that there, too, the
optimum length is about three seconds for a three

sl 5

(s)



sccond signal, Table V gives operating thresholds (F
values) for all the systems described.

=16~



UNEQUAL STGRAL AMPLITUDLES

The multi-array I detector, as presented here,
could also be used on a worldwide network of stations.
We have so far assumed the noise, as well as the signal,
to have the same rms amplitude on all arrays, When this
is nct the case, we first normalize the trices by a
long=-term average of the noise estimates, The average
should be long :nough not to affect the statistics and
short cnough to follow daily variations in the noisc
level, In practice, a running average of the estimated
residual noise power f{rom the preceding hour or so
would probably be satisfactory. The theory assumes the
noisc to be identically distributed on all channels,
but amplitude variations can be treated as an amplifier
gain crror, Notice that in forming the network test
statistic (3), the sums over i and t can be done at
cach station prior to transmission to the central stae-
tion, so that the only quantitices that nced to he
transmitted are the contributions to the j sums in the
numcrator and denominator, i.e.,, just two numbers. (The
contributions to the denominator will average close to
1, due to the noisec normalization, but the fluctuations
arc important.) The central station then has to sum
contributions from windows with the appropriate time
delays, divide, and compare with the threshold.

For purposes of analyzing the performance of such
a network, the amplitude factors aj would be given by
the distance-amplitude corrections for cach station
for a given epicenter location, divided by the rms noisec,
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Relation (5) says that A, and hence the detection capa-
bility, depeunds on the root-mean-square of the amplitude
factors, Thus curves such as given in Figures 12 through
o4 can be used here also by multiplying the signal/noise
ratio indicated in the Figures by aj({ u.z/M)'l/z to
obtain the signal/noise rutio requirsed on each station,
Note that the false-alarm rate does wot depend on the
"j' so Table V can also be used for this case,

The composite (>K) detector can also be used for
a4 worldwide network, and since there are no special
requirements on the noise at differeut stations, no
normalization need be done, In addition, the summation
4t the central station should he somewhat faster than
in the cuasce of the multi-array F detector, so that
more bheams could be formed in real time, Also, the only
information that nceds to be transmitted to the central
station is a 1 or a 0, The difficulty with this detector
lies in the analysis of its performance, which is trouble-
some but wot insurmountable, The first thing to notice is
that, with unequal signal strengths, the probabilities
of detection on each individual station, pj
longer be equal as required by (1), Thus to compute
P(>K), a more complicated procedurc must be used (Wirth,

» will no

1971). The €alse-alarm rate can be computed as before

if all the stations have the same number of clements,
although this is not a requirement for the detector to
work. (One could require that cach station have the

same false-alarm rate, and then set different thresholds
FJ for stations with different numbers of elements; or
degrees of frecdom, Numerically this would be easy to
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do and might also possess some statistical advantage
over the scheme of using the same F threshold on cach
station, although this has not heen investigated,) The
principal Jdifficulty lies in the fuct that the optimum
choice of K depends on the relative signal strengths at
the different stations, as will bhe shown below, Thus

for optimum performance, different choices of K will in
gencral he required for monitoring different regions of
the carth, There would %2 no particular problem in
implementing this, since K is just the minimum wumber of
individual "dectectious" required in order for the cen-
tral collecting station to proclaim a network detection,
and different numbers could casily be programmed for
monitoring different regions of the earth, A complica-
tion arises because the falsc-alarm rate also depends on
K, so one would cither have to allow the falsc-alarm
rate to vary for different epicenter regions or clse
specify different station thresholds also. Again, this
would not he difficult to implement, Thus the composite
(>K) detector is somewhat more flexible, slightly less
sensitive, and requires a lot more individual tailoring
than the multi-array F detector for network applications,

To investigate the behavior of the optimum K for
differing signal levels, we consider a simple case in
which there arc only two different signal levels, We
take Ml stations with beam signal/noise ratio (S/.\')l
and Mz stations with ratio (S/N)z, such that M = Ml + M2
is constant, Overall false-alarm rate is held constant,
Figure 15 is a contour plot cf the optimum K values,
holding (S/N)2 constant and allowing (S/N)l to vary
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geometrically, {The surface should be considered to be
composed of terraces, See Wirth, 1971, for a description
of the contour algorithm used.) The figurc shows that
the general effect of having a few stations with large
signal/noise ratio is to decrease the value of K. The
figurc also makes it obvious that guessing the optimum
KN would be a little difficult, even in this simpliried
case, Given an actual retwork, however, it would not be
difficult to calculaie the optimum strategies, Figure

16 gives contours of the corresponding probability of
detection for the optimum choices of K. The increase
towards the upper right corner is not really surprising.

An interesting comparison can be made with the
multi-array I detector by holding the rms of all the
signals constant, instead of (S/N)Z. Since the F
detector is sensitive only to the root-mecan-square of
the signal/noise ratios on all the stations, the prob-
ability of detection should be constant, Figures 17 and
18 are the corresponding plots for this constraint, The
rms signal/noise ratio is 1,224, for which the multi-
array F detector has a 90 per cent probability of
detection, The behavior of K is very similar to the
preceding case, indicating that it is sensitive primarily
to the ratios of signal levels, The behavior of the
probability of detection for the optimum choice of K
(Figure 18) is, however, not entirecly cxpected, It
should be remembered that the multi-array F detector
should have 90 per cent probability of detection over
the whole plot., This points up another difference
between the two detectors: while for equal signal
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levels the composite (>K) detector is nearly as good as
the multi-array F detector, for disparate signals it
does increasingly worse., In particular, Figurc 18 shows
that the presence of a few stations with large signal/
noise ratio is especially damaging in comparison, This
should be kept in mind when making a choice between the
two detectors for any particular system, however the
difference may not be as great as it seems. The 66 per
cent contour represents a 1 dB difference in signal
detection thresholds between the two detectors (Table 1V)
and the 30 per cent contour probably represents only an
additional 1 dB, judging from the operating curves,

We have so far based our analysis on the assumption
that all stations werc to be retained, no matter how
poor. This is not necessarily the way things are done
in recal life, and a little reflection shows that this
is not always wise, For the composite detector it is
casy to sce why: véry poor stations contribute only
false alarms and thus represent a negativ< asset, The
same thing is true of the multi-array F detector, but
the recason is not quite so obvious, The work on optimum
time windows for this detector shows that increasing
the degrees of freedom while holding X constant results
in poorer performance unless N1 and N2 arc very small,
Equations (3) and (4) say that this is exactly what
happens when one adds very weak stations to the network
(u£+1<< 2 a?).

The compututions donc above for the composite
detector were repeated, throwing out the poor stations,

Figures 19 and 20 arc analogous to Figures 15 and 16
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and give the contours of optimum K and the probabilities
of detection for varying numbers of strong stations (M)
and signal/noise ratio (S/N). Calculations were also done
extending the graphs downwards, i.e., for the case of a
few weak stations. These calculations show that it is
generally better to discard stations whose signal/noise
ratio is less than about .4 - ,6 times the signal/noise
ratio on the strong stations, if M > 3, (For example,
comparing Figures 16 and 20 along the lines M1 or M =6
shows a crossover near (S/N)l/(S/N)2 = 2.0, above which
it is better to drop the weak stations.) Considerations
about the minimum desirable number of stations in the
network for determining locations will also play a part
here, If half the stations (11) have only 1/4 the
signal/noise ratio on the other half (which is 1,5),
then the probability of detection 1is ~60 per cent if
the weak stations are dropped, compared with ~30 per
cent if they are retained, which corresponds to a
"threshold magnitude'" change of about 1 dB. (In Figures
16 and 20, the greatest difference would be in the upper
right corner, but since the probabilities are close to

1 here anyway, the difference is not as great as in

the example cited.,) Quantitative studies of the multi-
array F detector for this case are being carried out in
the context of determining the optimum filter, which is
an analogous problem, as pointed out by Blandford, These
will be reported in the future, Preliminary results
indicate a rejection criterion similar to that for the
composite detector,
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CONCLUSIONS

1. A signal time window longer than 3 seconds
improves the detection capability of F detectors on
small arrays, resulting in performance clousely approach-
ing that of a power detector, without degrading the
desirable features of the F detector.

2. These longer windows are a disadvantage, however,
when the arrays are used in a detection network., Quali-
tatively this is because more than one station must
trigger for a detection, so that a false alarm on only
one due to statistical fluctuation is not serious., In
practice both the short and long windows might be used,
the long for detection at each station independently;
and the short for the final decision in combining the
station detections., After detection, a resurvey of the
data could be performed for location purposes,

3. A full 22-subarray NORSAR can perform within
5.4 dB of its theoretical N'/2
signal correlation by using independent F detectors on

performance for perfect

each 6-element subarray and declaring a detection with
12 (the optimum number) or more subarray detections,

A nulti-array F detector would lose only 4,3 dB, An
iterative technique in which a first detection is made
with a higher threshold on fewer than K subarrays,
followed by detection using a lower threshold on more
than K, is uniformly worse than the simple method,

4, I{f some stations have higher signal-to-noise
values than others, the advantage of the multi-array
detector over the composite detector becomes somewhat

greater.
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5. The multi-array detector requires slightly more
data transmission, but the decision strategy for the
composite detector is more difficult to calculate.

6. The different network detectors can be imple-
mented for a large-aperture array, or a real world-wide
network, by straightforward extrapolation of the tech-
niques presented in this paper.
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TABLE 1

Detection levels for total beams, assuming signals per-
fectly correlated, (Signal/noisc ratios required for 90%
detection at 1 false-alarm/day, with 3 second time window

and Nl = 3).
Improvement
No. of No. of Beam Element Over Single
Subarrays Elements S/N S/N Subarray
1 6 5.31 2.7 0 dB
7 42 3.583 +553 +11.9
13 78 3.505 .397 +14,7
2R 132 3.47 . 302 +17,1
1 12 4,13 1,193 0
4 48 3.57 .515 + 7.8
6 72 3.52 .415 + 9,2
11 132 3.47 .302 +11,9
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Figure 1. Signal-to-noise values required at thc seismometer
level for a false alarm rate of 0,1 per day and probability
of detection of 0,9 as a function of the signal window in
seconds, Curves are shown for arrays ranging from 2 to 31
elements, and another curve has been drawn through the minima,
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APPENDIX
STATISTICAL CALCULATIONS
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NONCENTRAL F:  Subroutines have been written toe evaluate
the cumulative disteibution function of the nonceuntval |
distribution for all parities of Y and Vae The necessary
formulas have heen taken from Abramowitz and Stepgun (19600),
with corrections, Thelr formula 20,0.18, giviaug the rela-
tionship between the central and non-ceuntral distributious,
is lucorrect, as poiuted out by Blandford (1970), the
correct form is

L <) /2 j ';'9 )
PCF* [V pvg0d) = jgo 7l QTI'P' Nﬁ"l’”"’:’ (1)

The upper integral Q & prob(u > F) is the one evaluated
here, and the relationship is Q = ) - P, 1t is casy to

sce that (1) still holds if the I'"s on hoth sides ure
replaced hy Q's, This formula is used for all three cases,
The suw always converges for finite A, however, overflows
may occur if c‘lzoxceeds the range of floating-point vari-
ables, On the CIHC 1604 computer, this restricts the non-
centrality parameter to A < 1416, The mux.mum of 2000 terms
of (1) taken in the subroutines shonld he adequate within
this range of X for an accuracy of at least six significant
figures in Q.

Observe that the third paramecter (v,) of Q ou the RHS
of (1) does not depend on j. lUse is mndc.of this fact in
choosing formulas for Q(F|v;,v,) in order to minimize
computations, It has been possible in two cases to obtain
forms which require ouly ~M operations, where M is the
number of terms taken in the infinite series, rather than

e



N° as might have teen expected, In the third case, Vs
even, the infinite sum can be done explicitly, These
econemjes are possible because the parameter x in all
the expansions for Q, defined by

v,

ST T
dovs not depend on j,

V) even: For this case, formula 26,6, is used for Q:

v:IZ v, vz(v202)

Q(F,Vlovz) = X (1 » ™ (l=x) * (l-x)z e oo

(3)
vz(v202)°°°(v2°vl-4)

v Iofooo(;l.z‘, (l.x)

Vl/Z';

where x is defined by (2). Since the only dependence on
v; (and hence on j) is in the number of terms, ecach
additional term in the infinite series in (1) requires
only one additional term in (3), supporting the claim
made in the paragraph above, Listings of all the sub-
routines (QONCF) are given at the end of this section,

vy and vy odd: Formula 26,6.8 can, with some manipu-
lation, be written in the more convenient form

<A2-
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{¢ - x cot ¢ [1 ¢ % X ¢ oo

oo

Q("'vlovz) =

2edece - - 2
‘ (v3) 312y
335°°°(V2-Z)

(1)

2 2-4---(v2-l) (vztl)lz vz'l

* F.T°S'°°(V2'Z) X cot ¢ [l ¢ - (lex) o oo
(e (ve3)ee (vpovpd) (v,-3)/2
toSooo(vl-ﬁ— ( 'X) ]

where

¢ I arctan /v27vTF

and x is defined by (2). Note that, once again, the only
Jependence on v, is in the number of terms (of the second
series), so that an efficient calculation is possiblc here
also. Use is also made of the fact that the first series
can be removed from the iniinite sum since it is indepen-
dent of j.

vy, even: Formula 26,6.2. is, unfortunately, incorrect,
nor did several obvious modifications of the formula
yield correct answers. A similar formula was derived by
wWirth (1971), starting from 26.6.5 written in the form

/2 . 2
P(F'Vl.\)z) = (I'X)vl [l * ‘;l X ¢ l(‘z,}j’—)- xz + oeoe

vl(vIOZ)-..(vlovz-d) vz/z-l (5)

* T T v,-2) x ]

-A3-



The derivation will not be repeated here, but involves
putting (5) into (1, interchanging the order of summa-
tions, applying Kummer's transform to the confluent
hypergeometric series, and deriving a recursion for the
vesulting finite series, The result is a closed expres-
sion for Q which is very convenient for computation

/2-1

2 v
Q(Flvlovzox) s]- e-xx/Z (l‘!)v!/ g Ti (6)

i=0

where

Ty * 3 Ly, * A=)

Ty = §p ([vysdi=30d(1=x) )Ty = (v *20=4)xT, 5]

and x is defined by (2),.

The three subroutines were checked against tables
of the central F distribution in Abramowitz and Stegun
(1966) with A = 0, The routines for v, even and v, even
were checked against each other and against routines
which had been written independently by Blandford (1970)
from formulas 26.6.6 and 26,6,7, In addition, all
routines were checked against the Pcarson and Hartley
charts reproduced in Scheffe (1959), relatirg

RK



noncentrality parameters according to A = wz(vltl). The
agreement in all Cases was within the limits of read-
ability or table accuracy, or the normal limits of
single-precision computation. The nominal accuracy of
the first two routines is about six digits, due to the
truncation of the infinite series,

INVERSE F: A very useful routine has also been developed
for computing the inverse of the central F distribution
function, F(Q.vl.vz). which gives the threshold level
corresponding to a given false-alarm rate. This routine
has made possible the automatic plotting of detection
probability directly in terms of false-alarm rate.
Newton's iteration

Q(Fi) - Q
Fi’l - Fi - m— (7)

is used, with the previously described routines (QNCF)
being used to compute Q(F). The derivative is obtained
from 26,6.1 by differentiation

vllz

(rF)
] F 8 e ——
iR FB(wv, ,4v,) (1+7F) (vy*v;)/2

where r = vllvz and B is the beta function:
B(a,b) = r(a)r(b)/r(asb). Starting values are derived
from 26,6.16 and 26.5.22 over part of the range of

056



arguments, The inverse of the normal cumulant required
for this formula is provided by a routine (QUANTF)
derived from a Hastings expansion, formula 26.2,23. Over
the rest of the range, a starting value is obtained from
the asymptotic form

2

—_—————— for rF >> 1
D ’
vZB (1+rF) 2/2

Q(Fl\’l’\)z) &

from which

2/v2

Foglmy -l

where arguments of B are omitted for simplicity. (This
formula is exact for v, = 2.) The resulting routine
(FINV) converges quite well over a broad range of input
parameters, In less than 10 iterations it will match
the input value of Q to at least 5 digits relative
accuracy. (Note, however, that the second two versions
of QNCF have a lower limit on absolute precision of
-~10-10 due to rounding. Thus the relative accuracy will
te reduced for Q << 10-5.)

An inverse of the noncentral F might also be useful,
A(F,Q,vl,vz), giving the noncentrality parameter in
terms of the probability, i.e., the signal/noise ratio
required for a given probability of detection, The
derivative for a Newton's iteration (7) is easy to

-A6~



obtain from (1):

8Q(F| vy, 1) Y
T = 3 (QGglvy o2 = Qv )]

but it is not so easy to see how to derive a starting
value, The approximations in Abramow’.z and Stegun are
impractical for this purpose. Actually, such a routine
has not been needed here. Signal/noise thresholds quoted
in the text were obtained graphically by linear inter-
polation with respect to (S/N). The high linearity of
the curves with respect to both (S/N) and false-alarm
rate may furnish.a clue to obtaining a starting value
for the automatic calculation, should this approach

seem desirable in the future,

BINOMIAL: The routine for computing the summed binomial
distribution, equation (1) of the text, is completely
straightforward, A listing of the subroutine (POFK) is
given below,

INVERSE BINOMIAL: The inverse of the binomial distri-
bution is used with the inverse of the F distribution
to obtain the threshold in terms of the false-alarm
rate for the composite (>K) detector., A Newton's
iteration (7) is used with a modified derivative. The
derivative of P(>k) is easily obtained from (1) of the
text

-A7-
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degz_k) 2 (1\]:) pk-l(l_p)M-k (8)

and it is easily computed, however, the iteration did

not converge as well as might have been expected when

this derivative was used with a starting value derived
from an approximation to P(>k). It is easily shown that
the lowest term of P(>k) is the largest if p < (k+1)/(M+1),
so that

P2k) = () pF(a-p)Mk

from which a starting value p = [P(Zk)/(g)]l/k has been
taken (assuming p << 1), Comparison of (8) and (9) shows
that

p p =

Use of this approximation to the derivative gave much
improved convergence with the above starting value. The
routine (POFKINV) is quite simple and converges well
over a broad range, even when the condition for (9) does

A8~

054



not hold., In less than 15 iterations it will match the
input value of P(>k) to at least 5 digits relative
accuracy., No trouble was experienced, but if any should
be, (9) could be replaced with the term actually biggest,
which is just (9) with k replaced by the smallest integer
>p(M + 1)-1, which might be done recursively., The deriva-
tive might also need to be changed in that case,

OTHER CALCULATIONS: Routines were written to compute equa-
tion (2) of the text and its inverse, but they are not
included here because of the negative results and their
doubtful utility., The inverse routine was not very satis-
factory and frequently failed to converge, although more
than enough highly accurate results were obtained to

reach the conclusions stated in the text,

A special routine was written to compute the prob-
ability of at least k events out of two groups having
different probabilities, although the more general pro-
cedure of Wirth (1971) could also have been used., In
the notation of (2)

Ml M2
P(ik) = z P(i Ipl) P(>(k-i)|p2)
1 -—
or
M
1 M . M,-1i
P(>k) = 1y pl a-py) s
2 izis (;7) py (1-py) 2

-ADe
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U)l

where

(
M

2 M, M,-j

J.GY ey e P,

J

1, if i>k

and iS = max(0, k-MZ). The routine (POFK3) is fairly
straightforward, False-alarm rates for this case were
computed from POFK and its inverse, since false-alarm
rates were assumed to be the same for all stations.

-Al0-
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FUNCTION QuitF ¢ FsELANL, N2 ) N1
QNCF = FRORC 1>k J» WHFRE U DISTKIB. AS NON=CENTHAL F, W/ NON-
CENTRALITY PARAM. w*Li % ANP *N1sNZ2e UEGREES OF FREEDOM, (N1 EVEN),

4w

EL2 = FL e.% T EN1 = N1 ) EN2 = N2

EM = ENC #,% 4 X 8 EN2/(ENZ + ENL1eb)

Y = 1.~ X ¥ M = | = xewepM

Fl1 = 1, (Y NUT @ N1/2 = 1

Do 10 I = 1,nNUT

T =T vy & gusfl 3 SM 8 SM + 1 % EM = EM o 1.
FI s F] ¢ 1,

P = s» % AJd 8 ELZ s D e 1.

DO 20 U = 1,200"

ET *Y & fFu/bl ] SM = 5M ¢ |
Ty 8 4J + SN s P =P+ Ty
IFC Tu/P LY. 1E=7 ) 3ne1s
EM ® EM + 4, ¥
AJ 8 AJ & ELD/D
PRINT 1
FORMAT(/ 55K PACR CUNVIRGENCE UNCF)
QNCF 8 Pervpp(-EL2)

RETURA
END

Fl'FlOil % D.D’il

EVeN
21
St
4n

fity

2
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10

20

FUMCTLON QMGF( P 2BELsP1aND )
DATA (TP = ,K7601977247)
QNCE 3 PRORC (IDF )s WHFRF U DISTRIA.

ié 19 71

AS NON=UENTHAL F, W/ NON=

CENTRALLITY PARAM. w#ci &« AND *N1,NZe DEGREES OF FREEDUM, (N1,2 0ND).

EL? = FL .5 % EN1 = N1
X = EN2/(EN? + ENL®F)

Ty = SONTE( EN{*F/EN? )

T = ¢ 5 1, s Fl = 3,
DO 10 1 = ¢,n0Y

T =T ¢ x & (F1ol,)/F]

FI = Fl + 2,

A = TFIl ¢ (THET = X*TNegQM)

G = TF] * T o (Fleg1.) & YeX®TN

T = =

SK = 1, % Fl s 3.
DO 20 | = 1,NUT
T=T1T9e¢ v e gmyFl % SM = SM + T
FI 2 F1 & 2.
P = SM (1 AJ B ELY
Do 30 U = 1,2000
T=T Y o gM/bl € SM 2 SM + |
Ty ® AJ » SM ¥ P =P ¢ T
IF( Y/P,LT.1F=-7 ) 4y,05
EM 8 EM + 1, | Fl 32 Fl ¢ 2o
Ay = AJ « ELo/n
PRINT 1

FORMAT(/ 2om POOR CONVERGENCE UNCF)
GNCF = A o EXPF(=EL2)eNeP

RETURN

EnD

[ )

R o

MW
ENZ = N2
Y B 1.5 X
THET = ATANF(1,/TN)
NUT = (N2=3)/¢
SM =2 SM + |
EM = FN2 + 1.
NUT = (N1=3)/¢

EM = kM o+ 2.

L = 1.

030010

wp
20
Sn
41
99
b
7n
g
9
tun
11
4

14
191

:'t)l
‘U
1.
e
PRY

5
/6
271
/81
A9
00
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FureTlun guope boELsNL, N2 )
QNP = PRARC UdF ds wHERE U NISTHIR. AS NON=CENTHAL F,
CEMTRALITY PARAM. *E| ® AND *N1sN2* UEUWRE=S OF FREEDOM,

EnY = N1 $ FN2 8 N2

X = FN2/(EN? & ENY®E) $ Y 8 1. X
EN14 3 Ny - 4, $ ENIY 3 EN14 o EpLwy

T2 s 0. $ g™ = T1 = 1, 3 Fel = 2,

NUT = N2/77 - 1
DO 10 I = 1,nUT

TS = 11
Ty &8 (CeNLY*®D , «b2]1)#T1 o (EN1A*F2])oK*T) » XK/F21
SM s M o+ T1 ) T2 8 TS

F21 s Fé1 » 2.

QNCF 8 L.~ FXPFOCENTSLOGF(Y) = EL*X)*.5) ¢ SM
RETURN

END

e g 71
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FUNCTLON Firnyg GaNien2 ALL Niay2

G = PROWC 12F1rY 3s 1 NISTRIG. AS Fo W/ Ni,NZ DEGREES OF FHEEDNM. 210
INVERSE cUMULANT OF FenISTHIn.» LIVES THRESHULD AS A FUNC. OF S
Fal Se=aLafm RaTe FOR Fisweh NETECTORS  (ALL N1,NZ2) MW ar

Y

ENT = NL } ENE 2 W& ¥ R = FEN1/EN2 Y1
EM 2 (EN14FND) 042 T ENIH = ENt{e.> 7
TR YMOUF(Lt,2y 1 201 b

1 D = FN2 ¢ 5 + i 38 3 1, ) NUT = Ni/2 = 1 91
GO0 1n 4 Lo

2 1F( ¥MOUFIND,2)y ) 6,1 110
3D = ENL »,5 4 U8B 8 1 » NUT = N2/2 = 1 ién
4 DO 5 | = 9,NUT K]
B =R « yn * U * 1. 14y
5D =1 + 1, C5
B=+k+/20n ' GU TO 1y 161

6 8 3 3.;.4y59,8576 b Ui ® .5 $ b=y, e
[T 2 (Niey) /2 b ANUT 2 (NQeNL)/e¢ = 31 18
DO S I 2 4,rur 1Y

B =g ¢ /p Al
IFC TLEU [T ) 708 cln
7V = -,5 e,
8 U=y ¢ 4, 234
9 D = D 1. ~4n
10 EN2KF & £,/ END 4 R = (ENZR/tmeQ))webN2y a5
IF(C RF.GT.10. CHe N1l T4 <Oke (NLoLT.6 ¢ANU. QelLTolF=7) ) 18,2y cb0

15 F = (RF=1,)/R 3 0 TC So 17y
20 Y = «QUANTF( n ) s FL = YeY/8., =,b M
ENT = 1./7(N*<1)y + ENZ = 1./(Ne=1) ) M 2 2./(EL1*END) 9

W oz YOSURTF(HeFLI/H = (EN{=ENZI®LEL *.BI33333335 =.hpb666660667/H) sun

F oz FXPH( 2,00 ) tqy
30 DO 5n 1 3 1449 ‘e
Do s GNUF( F;o,o'\lin\l‘g Yy = U 48,
1F ¢ AESH(DMY/A.L1,1E=5 ) 4 sar 44,

40 RF 3 f ¢ § -1t
Den, 2 b ¢ CRR LIS K LIS W Rt weEN H 16
50 F = F & (1,¢ NFLueUY) 7
foo Finv = ¢ o
RETLFA . )\"‘v

EnD 4pT
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FUNCTION QUANTF(P)

P = PROUC USQUANIF ), WHERE U DISTRIBe AS ZENQO=MEAN UNIT NGRMAL.

INVERSE OF PROPF Mw

SIGnh = 1, ) @sp

IF(P.LE«n. . OR PeGE.1.) 10,20

QUANTF 3 p

PRINT 1o P & RETURN

FORPMAT (241 ERRNR IN QUANTFI(P), Pa3 EZU.10)

1fF¢ P.GI ,n,5 ) 25,30

SIGN &8 =1, ¢ Qs1,.-9

T = SCRIF(=2.0 LUGF(Q))

QUANTF &8 SIGNwe (2:915597 ¢ Te(, 802858 ¢ Te,y103¢8))/11,¢ T
(1.432788 « T*(,1R926Y ¢ Te.y019uB))) = T )

RETLRA

END
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FUNCTION POFK( NokoP )
SUM Nk BINOMIAL UISIKIR,
PUFK = PROR. nF AT LEAST K EVENTS UUT CF N
WHEN ALL EVENTE HAVE PrRoR, P
MW
POFK = | & PegpM
R s (1.°P) 7 p 3 A s N $ H s,
KP = K ¢ {
DO 1!‘ l | ] KppN
T =Y & (A/B) » A
As A=y, ) BRab e+ 1.
PFK 8 PAFEK o 7T
RETLRA
END

FUMCTION POFKINVE Naw,P )

INVERSE nF POFK

P = PROW. NF >k EVenNTS WHEN ALL HAVE PRUS. #FOFKiINVe
MW

C =4 = 1. b} R = v

DO 5 | = 1,n

CaC #» ayw $ Az A+ 1,

Bzw -4,

Rk = ;.7 g

PP 2 (P*r)enpy

DO 10 [ 2 1,358

DP = FrOre¢ noK, PP d/e - 4,

1F ¢ AESH(DP),| TlE=5 ) 20,1y

PE = FP o (1,« UPaRK)

POFKIAY = pp

RETUFRA

Enn

Ny

;U
el
39
40
5
6n
0
1f}

L
11y
len
130
L4
Lo
160
L7y
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10

20
25

30

FUKCTIUN PUFKIC KyN1,N?, P1P2 )
pkfik. NF >k TOTAL UF Twn SETS, Tngsrlusr CONTAINING Ny ELEMENTS

W/ PFCH* P31, TWE SECCND N2 ELEMEN
NE 2 N1 AND w S HleN?

T1 2 F1 o0 Nt ¥
R1 ® (l.ept)/py ¢
PUFKY =z r,
A=l ®N 1
1S = ¢
l‘( K-G'-N? ) 102
IS = K = N?
DO In I = 1S,Mm

12l
TFC TTauk, k) 250,
gM 8 Tz 2 T2a
C = Mg +
JS T K = 11 e 9
DO 2o JU = US,n?
12 =2 12 ¢ (/Y * kg
c=C~ 1. +
sM:SMtT;
POFXY = ENFxy o dMe ]y
T1 =2 11 o (A/R) * w.
A""‘- +
1l 8 |l -1
RETLRN
gND

w/ PhOB. P2

TeU 8 P& ow N2
RZ = (1+-P2)/P2

& ® 1.

L W

ne®=D ey,

R b e+,

ve 23 71



